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The universal approach [l-3] to problems of the stability and quasistatic growth of cracks in solids during 

cyclic loading and loading which slowly varies with time is generalized to dynamic crack propagation 

processes. The general equation of d’Alembert-Lagrange dynamics for systems with two groups of 

generalized coordinates, Griffiths coordinates and Lagrange coordinates, serves as the starting point. The 

parameters cha~cte~ing the shape and d~ensions of the cracks from the first group, while parameters, 

with an accuracy to which the displacement fields in a body with cracks are given for specified values of the 

specified coordinates of the first group, form the second group. A system of equations is obtained which 

enables one to describe the dynamical behaviour of bodies with cracks for fixed crack parameters, the 

dynamic propagation of cracks and also the transition of a body with a cracks-load system from one state to 

another, that is, the start-up and arrest of dynamic cracks. The application of the method is illustrated using 

model examples. 

FRACTURE, which is accompanied by the dynamic propagation of cracks can arise both during the 
dynamic (in particular, impulsive loading) of bodies containing cracks or crack-hke defects as well as 
when crack instabilities occur under conditions of quasistatic loading. A typical example is the final 
fracture of a structural element or component when a fatigue crack of a critical size has been 
formed. From a practical point of view, the greatest interest lies in establishing the conditions for 
the initiation of the dynamic growth of cracks and the conditions for the arrest of this growth. This is 
necessary for the well founded specification of standards regarding the permissible degree of 
defectiveness of structures which are subjected to the action of dynamic loads and for the choice of 
methods of preventing or retarding dynamic growth which has afready begun. 

A review of the results on dynamic problems in fracture dynamics can be found in [4-6]. The 
three types of theoretical investigations which are the most developed are: the determination of the 
fields of the dynamic stresses in bodies containing fixed cracks, the investigation of the processes 
a~ompanying the dynamic propagation of cracks with constant (specified) velocities and self-similar 
problems of the dynamic growth of cracks. The final result of the majority of investigations consists 
of the determination of the coefficients of the singular terms in the expressions for the stresses, that 
is, the determination of the dynamic stress intensity factors. By comparing these factors with certain 
crack stability characteristics, conclusions can be drawn concerning the conditions for the initiation 
and arrest of the dynamic growth of cracks. 

The conditions for the start-up and arrest of cracks are among the least-studied problems of 
fracture dynamics. There are very few experimental data regarding these conditions and they are 
often contradictory [4-81 while theoretical investigations are only at an early stage. Boundary-value 
problems with fixed cracks and with dynamically propagating cracks are quite different. Here, the 
transition from the first type of problem to the second is non-trivial: the initial conditions for the 
start of the crack growth and the very instant at which start-up occurs must be determined from 
considerations which do not enter into the conditions of the problem during the first stage. The 
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problem becomes more complex if account is taken of the dependence of the crack stability of the 
material on the rate of the crack growth. 

The propagation of dynamic cracks in large-scale structures is accompanied by more or less 
pronounced oscillatory processes. As’a rule, these processes, as well as the effect of secondary 
waves, are neglected. Meanwhile, experiments show that the rates of the growth of cracks in 
structures are relatively small compared with the rates of propagation of wave perturbations at, let 
us say, the Rayleigh velocity. The formation of longitudinal fractures in pipelines [9, lo] serves as an 
example. The velocity of sound in a gas is an order of magnitude lower than the rate of propagation 
of elastic waves in the walls of a pipeline. Furthermore, the progress of fracture fronts is regarded as 
a consequence of decompression, that is, the fall-off in the pipeline pressure. The rate of 
propagation of longitudinal fractures therefore turns out to be one or two orders of magnitude less 
than the velocity of elastic waves. Oscillatory effects give rise to the growth of nominal stresses on 
the cracks front. Moreover, the development of cracks can appreciably modify the rigidity of the 
system as a whole and, consequently, the reaction of a structure to the action of dynamic loads. On 
account of this, there is a need for a complex dynamical analysis of a structure under crack 
propagation conditions. 

1. Let us now consider a “solid with cracks-load or a loading device” system with wide 
assumptions regarding the mechanical properties of the material of the body, the shape and 
dimensions of the cracks and also the nature of the loading. The shape and dimensions of the cracks 
are specified using m generalized Griffiths coordinates 1i, . . . , 1,) the set of which is denoted by 
I={&,... , 1,} . The number of generalized Griffiths coordinates is determined by the number of 
parameters, with an accuracy up to which the dynamically propagating cracks are specified. In the 
case of an open planar crack, its length serves as this parameter, that is, it is a single-parameter 
problem with respect to the generalized Griffiths coordinates. A planar crack of elliptical shape is 
specified using two generalized coordinates, the lengths of the semi-axes under the assumption that 
it retains its elliptical shape during the growth process. In the case of a planar crack of arbitrary 
shape in the plane, larger number of generalized coordinates have to be specified such as, for 
example, the set of lengths of the radius vectors drawn at different angles to points lying on the 
contour of the crack. 

Confining ourselves to irreversible, “unhealing” cracks which are typical in structural materials, 
we choose the generalized Griffiths coordinates such that they are non-decreasing functions of time. 
The constraint conditions then take the form 

61, > 0 (j = 1, . . ., m) 0.1) 

We shall assume that these constraints are ideal. The displacement vector field in the body for 
specified values of Ii, . . . , l, is denoted by u(x, t 1 I), where x is a coordinate vector and t is the time. 
The variation of the displacement field can be represented in the form of a sum 

(1.2) 

where 8uL are the variations in the case of fixed cracks (Lagrangian variations) and 6uo are the 
variations which are generated by the change in the crack parameters (Griffiths variations). The 
variation of the Lagrangian displacements is illustrated in Fig. l(a) while the combined Lagrangian 
and Griffiths variation is shown in Fig. l(b). 

Let us now apply the general equation of d’Alembert-Lagrange dynamics to a “body with 
cracks-load” system. Dynamical processes occur in the system such that the relationship 

6A E 6A, f 6A, + iSA, + &AI < 0 

is satisfied at each instant of time. 

(l-3) 

Here 6A, and 6Ai is the virtual work of the internal and external forces, respectively, SA, is the 
virtual work of the forces resisting the propagation of cracks and 6AI is the virtual work of the 
inertial forces. As applied to the quasistatic growth of cracks 6AI=0 and we arrive at the 
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FIG. 1 

formulation of the problem from [l] where those states of the body are accepted for comparison 
which solely differ in the values of the generalized coordinates El, . . . , 1, when the equilibrium 
equations, the compatibility equation and the equation of the mechanical state are satisfied, as well 
as the bounda~ conditions and the Lyapunov stabihty conditions both in the investigated 
(un~rturbed) state and in neighbou~ng ones. The “body with cracks-load” system is in 
equilibrium, if the sum of the components of the virtuai work for any variations of the generalized 
Griffiths coordinates which satisfy conditions (1.1) is non-positive: 

6A z 6A, f 6Ai + &At < 0 (1.4) 

Here, if 6A <O for any Ui>O, the state of the “body with cracks-load” system is subequilibrium 
and stable. If, when 61i>0, where j = 1, . . . , ml, relationship (1.4) is satisfied with the equality sign 
and, in the case of the remaining Slj>O, we have 6A<O, then we say [l-3, 11) that the system is in 
an equilibrium state with respect to the generalized coordinates II, . . . ,I,. This equilibrium state is 
stable when 6(6A) <O and unstable when 6(6A) >O, where the second variation is also taken with 
respect to Griffiths. When S(6A) = 0, the equilibrium state is neutral. This means that a given state 
is a boundary state between stable and unstable states or that, in order to reach a conclusion 
regarding the stability, it is necessary to investigate the following variations of SA. 

In order to solve dynamic problems we return to the more-general relationship (1.3) containing 
the virtual work of the inertial forces. Here, we distinguish at least five cases: the motion of a body 
when there are fixed cracks, the beginning of the propagation (the start) of a crack, the motion of a 
body, which is accompanied by the dynamic propagation of a crack and the subsequent motion of a 
body when the crack front has arrested. If the number of crack parameters is greater than one, then 
more-complex situations are possible when cracks grow simultaneously or in turn, a crack starts to 
grow with respect to one of its parameters and subsequently starts to grow with respect to another 
parameter, etc. All of these situations are described by relationship (1.3). Taking account of the fact 
that the variations of the dispIacement field (1.2) are equal to the sum of two independent terms, we 
represent the virtual work in the form 6A = &A + f&A, where &,A is the work performed in 
Lagrangian variations and SGA is the work performed in Griffiths variations. 

Let the motion of a body commence from a state in which all of the cracks are subequilibrium. 
Condition (1.4) then takes the form 

&A = 0, &A c 0 (64 > 0, k = 1, . . ., m) (1.5) 

The first condition is equivalent to the equations of motion and the natural boundary conditions 
while the second (the condition of subequilibrium) ensures the constancy of all of the generalized 
coordinates Ii, . . . , i,. If, at a certain instant of time t, , the inequality &A < 0 is replaced by the 
equality &A = 0 for just one of the variations &>O, this means that, when t = t, , the necessary 
condition for the start of the crack growth along a generalized coordinate Ik is satisfied. The 
suf~cient start-up condition has the form FjG(SGA) = &'A > 0 when 81, > 0 (the second variation is 
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also carried out according to Griffiths). Trial calculations show that, in dynamic probiems, the 
weaker conditions &A = SG2A = 0 ensure the start of a crack. 

Thus, the conditions for the start of cracks growth at a certain t = t, , and simultaneously along ml 
generalized coordinates II, . . . , 1, can be represented in the form 

&A = 0 

&GA = 0, &x.4 2 0 (6tt > 0, k = 1, “. . ., mi) (14 

&A < 0 (& > 0, k = m+ + 1, . . ., m) 

The equations which describe the dynamic propagation of cracks when t> t, along mi generalized 
coordinates & f f . _ , i, with fixed vafues of I;n,+l. I _ ~ . f l, have the same form as (1.6)). The growth of 
a crack along one of the coordinates (I*, , for example) ceases at the instant t = t,, if the condition 
&A = 0 passes into the condition of subequilibrium: &A < 0 when Si, > 0. Further motion occurs 
when conditions (1.6) are satisfied, where Wli is replaced by mi - 1. After all the cracks have stopped 
growing, the motion of the body is described by relationships (1.5). 

2. The conditions which establish the instant at which a crack (or cracks) starts leave open the 
question as to the velocity distribution immediately after the start of a crack. Intuition and tests 
suggest that the dynamic growth of a crack starts with a certain finite rate which differs from zero (in 
the numerical examples referring to experiment [6,7], it is usual to put the initial velocity equal to 
0.1 c,, 0.2 c, and so on, where c, is the rate of propagation of surface waves in the material). 
Similarly, if a crack appears as the result of the insertion of some object into the body, the rate of the 
crack growth is not the same in general as the ~rres~ndin~ velocity component on the leading 
edge of the object. 

In order to find the velocity distribution at the instant when a crack starts t = t, , let us consider 
the properties of the virtual work &A in the neighbourhood of this instant. When t = t, , let the 
motion begin along a generalized coordinate li. After the beginning of the motion, the condition 
&A = 0 is maintained, that is 2&A (t* -t At) = 0 when At>O. Let &A be a differentiable function 
of t and ti in this neighbourhood. It follows from the condition &A (t* ) = &A (t* + At) = 0 that, 
when t = t, , we must have 

d f&A)/ddt = 0 (2.1) 

If, when t = t, + 0, the virtual work &GA experiences a dis~onti~~ty which depends on the initial 
rate of the crack growth displacement then, instead of (2.1), we take the condition 

6oA (t* + 0) = 0 t2.21 
Since the rate of propagation of perturbations from the crack front is finite, the virtual work in 

(2.1) can be calculated when t < t, , that is, using the displacement field found up to the start of the 
crack growth. Equations (2.1) and (2.2) are therefore the equations for determining the initial rate 
of the crack growth. In the case of simultaneous start-up along two or more coordinates, it is 
sufficient to make small changes to the initial data or other parameters of the problem in order to 
separate the instants of the starts of the crack growth. These relationships may also interpret both 
the conditions 6(&A ) = 0 at which the real displacements, associated with a small increment in t in 
the neighbourhood of t = t, , are taken instead of the virtual displacements. 

At the instant of the start-up of a crack, an easing of the corresponding unidirectional constraints 
occurs. This release of the constraints is, in general, accompanied by the appearance of shock 
forces. However, such forces do not arise in a continuous medium (at finite rates of propagation of 
perturbations). In the neighbourhood t> t, of the instant t 
is equal to zero whence 

$ , the virtual work from relationship (1.4) 

~~f*~~~~d~ = 0 
t* 

After integration, we arrive at a well-known equation [12] which relates the velocity discon- 
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tinuities (both of points of the body as well as of the crack front) to the new parameters Ni, the 
generalized momenta of the shock forces: 

(2.3) 

Here T is the kinetic energy of the body with cracks. 
Since the rate of propagation of perturbations is finite, the kinetic energy T is a continuous 

function of f in the neighbourhood of t>t, . It follows from (2.3) that T(t* +O) = T(t,) so that 
Ni=Oforalli=l,.,. f m. This conclusion does not preclude the possibility that the initial period of 
dynamic growth of cracks is accompanied by an increased resistance of the material. In order to 
describe the a~ve-mentioned phenomenon, it is sufficient to introduce increased values of the 
cohesion forces (or of the specific breakdown work) on the initiat segments. Here, additional 
characteristics of the material which, in the general case, depend on the rates of growth of cracks, 
enter into the treatment. 

3. Difference and va~ation~l-di~erence approximations are used in computational fracture 
mechanics [4,6]. Here, the number of generalized Lagrangian coordinates is chosen depending on 
the required accuracy of the calculations. In principle, such an approach enables one to construct 
accurate solutions of problems concerning the dynamics of bodies with cracks. In the case of bodies 
with finite dimensions, this is achieved by using the complete system of coordinate functions and 
procedures which ensure the convergence of the expansions in these functions. In the case of 
unbounded bodies, suitable integral transformations are taken instead of series. For simplicity, we 
shall henceforth assume that the number of generalized Lagrangian coordinates is finite, while 
allowing for the fact that this number may be taken to be very large in the numerical implementa- 
tion. For instance, in calculations using the finite element method, the number of generalized 
coordinates (of modal point displacements) is of the order of 103, lo4 or even greater. 

Let us denote the generalized Lagrangian coordinates by 41, . . . , q,, and the set of these 
coordinates by q = {ql, . . . , qn} and represent the displacement field in the form 

(3.1) 

where the coordinate vector functions q&x 11) satisfy the kinematic bo~da~ conditions for a body 
with fixed cracks. To be specific, we shall assume that, unlike in the case of the generalized Griffiths 
coordinates 4, no constraints are imposed on the signs of the variations 6qk. When account is taken 
of (1.2) and (3.1), we obtain the variations of the displacement field 

(3.2) 

We will now formulate the equations of motion of a “body with cracks-load” system in terms of 
generalized forces. The components of the virtual work in relation (1.3) are linear forms of the 
variations Slj and 6qk. In particular, 

a& + a& = fq ~~~1~ i- Bi skunk (3.3) = 

where the factors Gi are analogous to the active generalized forces from [I-3, llf (force promoting 
cracks) while the factors Qk have the meaning of conventional generalized forces. If the material of 
the body is elastic, the external forces are potential ones and all of the constraints are ideal, then 
there exists a potential energy of the “body with cracks-load” system such that 

Gj = -ar.Ira~j* Qk = --arIraq~ (3.4) 

We wiI1 represent the virtual work done against the forces resisting the growth of the crack in the 
form 
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where yi is the specific fracture work per unit area of the crack (the new area of the surface is not 
doubled), dsj is an element of length of the contour of the ith crack and 6hi is the vector of virtual 
displacement of the crack contour. Generally speaking, the values of y depend on the positions and 
velocities of the crack fronts, that is, on lj and dijldt when j = 1, . , . , m. The integration in (3.5) is 
carried out along the length Lj of the contour while the summation is carried out over all of the 
cracks in the body. When account is taken of (3.2), formula (3.5) reduces to the form 

(3.6) 

where I?j are the generalized forces resisting the propagation of the crack front. We note that, 
generally speaking, the generalized forces Gj and Ij depend on the generalized Lagrangian 
coordinates, which are determined during the course of the solution. 

Finally, let us consider the expression for the virtual work of inertial forces 

&A I=- p s ( 
V 

-$- .Gu)dY (3.7) 

where p is the density of the material and the integration is carried out over the entire volume of the 
body V. On substituting the expansion of the displacement field u(x, $1 I) from (3.1) and the 
variation 6u(x, f/I) from (3.2), we obtain 

(3.8) 

where Yi and Zj are generalized forces of inertia. 
If the dynamic processes are accompanied by the growth of cracks with respect to all of the 

generalized coordinates, then the system of m + n second-order differential equations 

% + Y3 = rr, Qk f 1% = 0 0’ = 1, . . ., m; k = 1, . . ., n) (3.9) 

in the unknowns Ii, .-.,Ltq1, -*-, qn follows from (1.3), (3.3), (3.6) and (3.8). This system is 
solved with specified values of all the generalized Griffiths and Lagrangian coordinates as well as 
with specified values of their time derivatives at a certain initial instant of time. In a typical situation, 
the motion of the system begins from a state of rest with fixed crack fronts. The problem consists of 
finding the conditions for the start of crack growth, the paths and their rate of propagation, as well 
as the conditions for the arrest of the growth of cracks or the final fracture of the body. 

4. We will now show how to overcome the difficulties associated with the transition from one 
system of characteristic equations to another. Let the initial state of the “body with cracks-load” 
system be subequilibrium with respect to all of the generalized Griffiths coordinates. Then, instead 
of (2.9), we have 

G, < I?,, Qk + Ik = 0 (j = 1, . . ., m; k = 1, . . ., n) (4.1) 

The first group of relationships (4.1) ensures that all of the cracks are fixed, while the second 
group describes the dynamical processes in a body with fixed cracks. Relationships (4.1) are 
equivalent to conditions (1.5). During the first stage, we solve the second group of equations under 
the specified initial conditions which are imposed on the generalized Lagrangian coordinates, while 
checking that the inequalities from (4.1) are satisfied at each step for all j = 1, . . . , m. 

Let the equality &A = 0 when 6Zj>0 be attained for the first time at a certain instant t, . If 
condition (2.1) or (2.2) turns out to be simultaneously satisfied then, at the instant of time t, , the 
system ceases to be stable with respect to the generalized coordinate ii. The subsequent evolution of 
the system is described using the relationships 
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Gj< rj, G, + y, = rt, Qk + .fk = 0 

(j = 1, . , ., m, j # if k = 1, . . ., n) 
(4.2) 

of which the first group ensures the immobility of the cracks with respect to the remaining 
generalized Griffiths coordinates. The other relationships form a system of IZ + 1 second-order 
differential equations in fi, ql, . . . , qn. We find the initial conditions at the instant t, for the 
generalized Lagrangian coordinates using the results of the integration in the preceding time 
interval. The initial values of li is specified by the conditions of the problem while we find the initial 
value of the derivative dlildt by solving the system of equations 

Gi = ri, 
f (4.3) 

instead of using the starting instant c, . 
The second of the equations (4.3) signifies that condition (2.1) is satisfied, that is, the 

maintenance of a neutral state with respect to a generalized coordinate li in a small neighbourhood 
t> t, . If the work i&A undergoes discontinuities when t = t, + 0 then, instead of (4.3), we take the 
following: 

Ga (t*) = Pi (t*), Gi (t* + 0) = iri (t* -+- Q) (4.4) 

Since the generalized forces (in particular, the generalized resistive forces) depend on the rate of 
growth of the co~esponding cracks, Eqs (4.4) determine both the instant at which a fracture starts 
along a coordinate li as well as its initial velocity. 

The conditions for the starting of cracks along the other generalized Griffiths coordinates are 
established in an analogous manner. Here, the inequalities from system (3.9) are replaced by the 
corresponding equalities which are added to the equations which have been integrated in the 
preceding step. For instance, if cracks grow along ml generalized coordinates II, . . . , 1, where 
ml <m, then, instead of (4.2), we solve the system Gj + Yj = Ii, Qk + Zk = 0 when i = 1, . . . , m: 
k=l,..., n and when the inequalities Gj<rj (j = ml + 1, . . . , m) are satisfied. The growth of a 
crack along any of the generalized coordinates ceases only when the corresponding condition 
Gi -t Yi = ri is violated. After growth has ceased along a generalized coordinate, the equation in this 
coordinate is excluded from the combined system of equations and replaced by the inequality G6 l?i 
which ensures the immobility of the crack. In general, the conditions Gj + Yi< Ij and d~~/d~~ 0 when 
j= 1,. . ., m must be checked throughout the whole of the process of solving the problem. 

5. As model examples, we shall consider certain “beam” problems. Problems of this kind have 
been extensively discussed in fracture mechanics, starting from the work of I. V. Obreimov (1930). 
A review of some problems can be found in [13]. 

Let us assume that a thin elastic beam (or plate under conditions of cylindrical bending) is ripped 
off from an absolutely rigid mounting (Fig. 2a). We shall assume that the ratio h/l of the thickness of 
the beam h to the length 1 of the delaminating part and, also, the ratiofll of the maximum deflection 
f to the length 1 are small compared with unity. We assume that the beam is clamped in the 
cross-section x = I and loaded at the free end x = 0 with a force P(t) = P#(t), where PO = const 
and the function F(t) ~0 when t<O. The strength of the connecting layer is characterized by a 
specific fracture work y, that is, the amount of work that has to be done in order to push forward the 
delamination of the beam by unit area. It is initially assumed that the specific work y is independent 
of the rate of propagation of the crack dlldt. We will assume that the connecting layer is exceedingly 
thin and we shall neglect the deformation of the part of the beam located at x>l. 

Let the mass of the system M be concentrated on the end of the beam x = 0. As the generalized 
Lagrangian coordinate, we will take the deflection of the end, f. The length of the delamination I 
serves as the other generalized coordinate. For the deflection of the beam w (x, t) when 0 <.x s I, we 
adopt an approximation of the type (3.1): 

w (X, t I E) = f (t) II - @$)I8 (5.1) 



On the dynamic propagation of cracks 139 

Ftc.2. 

Formula (5.1) means that the dynamic deflection of the beam is taken to be similar to the static 
deflection with a time varying delamination length Z(t) and a displacement at the end f(t). It is 
assumed that a crack is irreversible, that is, dlldt > 0. We do not impose the constraint fS 0 since the 
analysis is terminated after the “collapse” of the delamination. Of course, a model with two degrees 
of freedom cannot include wave processes. However, it does enable one to illustrate the formulation 
and the procedure for solving typical problems concerning the initiation, dynamic growth and arrest 
of cracks. 

The expression for the potential energy of deformation of the beam has the form U = 3/2Bf2/13, 
where B is the bending stiffness of the beam. For example, in the case of a beam of width b, we have 
B = Ebh3/12, where E is Young’s modulus. 

We will now represent the sum of the virtual work done by external and internal forces in the 
form 6A, + 6Ai = -NJ+ PSf = Gal+ Q8f. Then, 

G = v!,Bf2/11, CJ = P - 3BfIP (5.2) 

The virtual work done by the forces resisting the growth of delamination SAf = -ybSl, whence 
I = yb. In the case of a generalized inertial force, we have the expression I = -M(d2fldt2) while 
Y=O. Hence, instead of (4.1) and (4.2), we obtain 

vlzBfW < yb, M#f!dt2 _1- 3BfIF = POP (t) (5.3) 

The inequality sign in the first relation corresponds to a fixed (subequilibrium) crack. If this 
inequality is satisfied, the second relationship is integrated with 1 = const. In particular, if the 
systems finds itself in a subequilibrium state when t = 0, then I = la, where lo is the initial size of the 
delamination. The point at which the equality sign is first achieved corresponds to the start-up of the 
crack. The instant t, at which motion starts and the initial velocity can be found from Eqs (4.3). 
Taking account of formulas (5.2) these equations can be written in the form 

“12BjVl’ = yh, dlldt = ‘I2 (l/f) dfldt (5.4) 

Let the mass at the end of the delamination be M-Npbhl, where N is a numerical factor. Then 
from the second equation (5.4) we obtain the estimate (dlldt), -N-“2(hll)co, where co = (E/P)~‘~ 
is the rate of propagation of longitudinal waves. For h/l4 1, N%= 1 the rate of the crack growth is 
significantly less than the rate of wave propagation. Thus the model is internally non-contradictory. 

For a more detailed discussion of the numerical results, we will change to dimensionless variables 

f 
=--, k=$, 

oat f0 
cp fo ‘=x9 B=r 

( 
PO!" f+Jg , 3B 

fo=r, M=Mlo) ) 
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Herefo is the static deflection of the end of the beam under the action of a force PO ,f, is the critical value of 
the static deflection and o is the characteristic frequency of the beam (all the above-mentioned parameters are 
taken for the initial value I= 1,). The dimensionless parameter p characterizes the ratio of the force p0 [or the 
corresponding quasistatic deflection) to the critical value with respect to the stability condition when there is a 
quasistatic load and when the length fs is fixed. 

In dimensionless variables, relationships (5.3) take the form 

&&s < 1, cp” + ttn*cpfP = 4n2F (z) (5.5) 

where differentiation with respect to the dimensionless time T is denoted by primes. To find the instant of 
start-up ?* and the initial rate A,’ = A’(r& instead of (5.4), we obtain the system of equations 

I3Q, = 1, cp’ - 2@*’ =o (5.6) 

Let F(T) = 1 when O<TST~ and F(7)=0 when T>T~. The motion starts from a state of rest 
g(O) = q’(O) = 0, A(0) = 1, A‘(O) = 0. During the initial stage, when A = 1, &< 1, the solution of the second 
equation of (5.5) has the form ‘p = I - cos2ar. When T* >rl we obtain ‘p = cosh(T1 -T)-coshT. We find the 
instant of start-up 7* and the initial rate A ’ by solving the system of equation (5.6). Initially, it is more 
convenient to express l3 in terms of r, using {he first equation. Then, 

(I - CDS 2lTT&‘, 

B={L 

T*:< TI 

cos 2n (Xl - T*) - cos 2xr*]-‘, ‘* > r’1 
(5.7) 

after which the second of the equations (5.6) yields 

h*’ = 
1 

np sin 2nze, %t<n 

JIM [sin 2n (n-r*) + sin 2n~*J-1, ‘t*>~~ f3.8) 

We do not write out the analytical formulas for the instant of arrest of a crack T** and its final size 

A** =A(T**). 
Certain numerical results are shown in Fig. 3, where the dimensionless time 70 prior to the start of growth of 

a crack and the dimensionless initial rate A ’ are plotted as a function of the loading parameter p and the 
dimensionless duration of the impulse TV. C&es 1-4 correspond to the values 71 = 0.1,0.2,0.3,0.5. The value 
p = ‘/“I corresponds to the load at which the dynamic deflection attains a critical value solely at the instant of 
maximum deflection of the beam. In the case of shorter impulses, a higher level of loading is required for the 
start-up. The curves A*’ = A*‘(@) in Fig. 3 resemble the experimental dependences between the stress intensity 
factor (the parameter p may serve as its anaiogue in this case) and the rate of propagation of the crack f4,5j. 

Figure 4 illustrates the change with time of the dimensionless deflection q (the curves with a single 
maximum), the dimensionless length A (the quasimonotonic curves) and the dimensionless rate of growth A’ of 
the delamination. Here, it is assumed that T = 34, that is the duration of the action of the force is half the 
period of the free vibrations of the beam of in*itiaI length. Curves 1,2 and 3 are constructed for l3 = I, 1.25 and 

FIG. 3. 
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FIG. 4. 

1.5, respectively. A crack is started when the dimensionless deflection ‘p attains the critical value ‘p, = p-‘. The 
instant at which the crack is arrested T** and its final length A ** also depend substantially on the level of the 
load, which is specified using the parameter l3. The second maximum on the curves A’ = A’(T) corresponds to 
the instant T = 71 when the action of the external force ceases. 

6. As a second example let us take a thin elastic plate which is fastened to an absolutely rigid 
mounting and has circular layer separation from the top. An impact with a load M with an initial 
collision velocity V, (Fig. 2b) is performed at the centre of the layer separation at an instant t = 0. 
When t< 0, the layer separation has a planar circular shape from above with a radius a0 and is 
unstressed. When t>O, the centre of layer separation acquires a deflectionf> 0 and the radius of the 
layer separation a can start to grow on account of the fracture of the boundary. We assumed that the 
mass of the part of the plate where the layer has separated is small compared with the mass of the 
load M and that the deflection of the platefis small compared with the radius of the layer separation 
a. We will approximate the deflection of the delaminated layer using the expression 

W(F,+Z)= -&(d-F2+2F2h$) (6-l) 

which satisfies the boundary conditions for a plate which is clamped along a circular contour r = a. 
The specific fracture work y is taken to be constant. 

In this case, the virtual work of the external forces is 6A, = MgSf where g is the acceleration due 
to gravity (the load falls vertically) and the virtual work of the internal forces 6Ai = -6U, where U is 
the potential bending energy of the delaminated layer. When account is taken of (6.1), within the 
framework of the linear theory of the bending of a plate we have U = 8rf*Dla*, where D is the 
cylindrical stiffness and f = Pa2/(16nD). The virtual work of the inertial forces 6AI = -M (d*f/ 
dt2)8f, and the fracture work SAf = -21ruy&z, from which we find the generalized forces 

c = 16df/u3, l? = 2st~y, Q = Mg - 16nDj/a2 

I = -Md=jldt=, Y s 0 (6.2) 

Relation (4.1) and (4.2), as in the preceding example, lead to a differential equation in the 
generalized Lagrangian coordinate f and an inequality in the generalized Griffiths coordinate 1. 
When account is taken of formulas (6.2), we obtain 

16nDPlcrS < anay, Md4fldP + 16nDj!u2 - 1If 2 (6.3) 

The initial conditions have the form u(O) = us(O) = 0, f (0) = 0, f’(0) = Vo, where V. is the 
velocity of the load at the instant of impact. 

Let us now introduce the dimensionless variables 
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FIG. 5. 

Here, f0 has the meaning of the static deflection of the delaminated layer with an initial radius a0 under a 
force Mg and f, is the equilibrium value of this deflection, that is, the value at which the detached layer of 
radius ae can start to grow even during quasistatic loading by a force Mg. Additionally, a characteristic 
vibrational frequency o. is introduced for the layer delaminated with a radius a0 and a mass M which is 
concentrated at the centre. As a result, instead of (6.3), we arrive at the relationships 

I% < aaV cp” f 4napfaa = 4ns (6.4) 

with the initial conditions a(O) = 1, a’(O) = 0, q(O) = 0 and q’(O) = (PO’, where cpo’ = 2nVol(oofo). 
While &J(T) < 1, the delaminated layer does not increase. Since, for any Vo>O and a = a~, the maximum 

deflection under the load is not less than 2fo, the growth of delaminated layers takes place when the loading 
parameter l3 > Y2. This growth starts at T = 7*, where T* is a root of the equation /TV = 1 and (P(T) is the 
solution of the second equation of (6.4) when a = 1. Calculations led to the equation 1 -COST* + qo’sin~ = 
l/p. The initial rate of growth a* ' = a'(T*) of the delaminated layers is found from the condit;on 
@p'(~*) = 2a'(T*). Whence, a*' = p(sinr*- (P*'cosT~), etc. 

The change in the dimensionless time 7, the dimensionless values of the radius of the delaminated layer a (T), 
the rates a'(T) as well as the deflection at the centre V(T) are shown in Fig. 5 for the following values of the 
initial rate of loading parameter: cpo’ = 0, 2, 5 (curves 1, 2 and 3, respectively). On conversion to dimensional 
variables with respect to the impact velocity Vo, these values are extremely reasonable so that Fig. 5 illustrates 
the behaviour of the delaminated layer under a low impact velocity. As the impact velocity is increased, the 
time T* up to the start of the growth of the crack increases and the duration of the growth stage T**Y* also 
becomes longer. Calculations reveal only an insignificant breakdown of the monotonic dependence of the 
instant of arrest on the collision velocity (Fig. 5). 

I thank K. A. Uglov for help with the calculations. 
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THE INTRODUCTION OF “FORBIDDEN” A~LITUD~S 
WHEN CALCULATING THE WAVE RESISTANCE OF A SHIP? 

E. L. AMROMIN, A. N. LORDKIPANIDZE and Yu. S. TIMOSHIN 

St Petersburg 

(Received 15 March 1991) 

“Forbidden” values of the amp~tudes are introduced into the Havelock formula, used in the linear theory 

of ship waves, which associates the wave resistance with their amplitudes. As a result, it is possible to 

achieve satisfactory agreement between calcaulation and experiment for various shapes of vessels. 

THE WAVE resistance of a vessel depends on the amplitude of the ship waves caused by the vessel. Linear 
theory assumes that these amplitudes are directly proportional to the intensities of the wave-forming features 
by which bodies moving close to the free surface are replaced and this enables one to obtain relatively simple 
formulas for calculating the wave resistance of a ship R, [l, 21. However, as the above-mentioned intensities 
are increased, the experimental dependences for the amplitudes deviate so strongly from linear dependences 
that the divergence between theory [l, 31 and experiment for R, turns out to be striking. Attempts to solve the 
non-linear spatial problem of ship waves both by expanding the flow characteristics in series in powers of a 
small parameter [4] as well as by using ch~acteristi~ dis~buted over its ~unda~es do not yield satisfactory 
results in the calculation of R, for ships of different shapes and different values of the Froude number, Fr, in 
spite of the considerable computer resources which are used. 

In this situation, it is reasonable to appeal to what is probably the simplest method of partially taking 
non-linearity into account, that is, to the introduction of limiting or “forbidden” amplitudes. Limiting 
amplitudes, which cannot be exceeded for any intensity of the perturbation source, are encountered in various 
branches of mechanics and physics. 

t Priki. Mat. Mekh. Vol. 56, No. 1, pp. 16>167,1992. 


